Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Commun ; 15(1): 2177, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467604

RESUMO

Neoadjuvant chemoimmunotherapy has emerged as a potential treatment option for resectable head and neck squamous cell carcinoma (HNSCC). In this single-arm phase II trial (NCT04826679), patients with resectable locally advanced HNSCC (T2‒T4, N0‒N3b, M0) received neoadjuvant chemoimmunotherapy with camrelizumab (200 mg), nab-paclitaxel (260 mg/m2), and cisplatin (60 mg/m2) intravenously on day one of each three-week cycle for three cycles. The primary endpoint was the objective response rate (ORR). Secondary endpoints included pathologic complete response (pCR), major pathologic response (MPR), two-year progression-free survival rate, two-year overall survival rate, and toxicities. Here, we report the perioperative outcomes; survival outcomes were not mature at the time of data analysis. Between April 19, 2021 and March 17, 2022, 48 patients were enrolled and received neoadjuvant therapy, 27 of whom proceeded to surgical resection and remaining 21 received non-surgical therapy. The ORR was 89.6% (95% CI: 80.9, 98.2) among 48 patients who completed neoadjuvant therapy. Of the 27 patients who underwent surgery, 17 (63.0%, 95% CI: 44.7, 81.2) achieved a MPR or pCR, with a pCR rate of 55.6% (95% CI: 36.8, 74.3). Treatment-related adverse events of grade 3 or 4 occurred in two patients. This study meets the primary endpoint showing potential efficacy of neoadjuvant camrelizumab plus nab-paclitaxel and cisplatin, with an acceptable safety profile, in patients with resectable locally advanced HNSCC.


Assuntos
Albuminas , Anticorpos Monoclonais Humanizados , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Paclitaxel , Humanos , Cisplatino , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Terapia Neoadjuvante/efeitos adversos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/induzido quimicamente , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Imunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
2.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314785

RESUMO

Spinal cord injury (SCI) due to traumatic injuries such as car accidents and falls is associated with permanent spinal cord dysfunction. Creation of contusion models of spinal cord injury by impacting the spinal cord results in similar pathologies to most spinal cord injuries in clinical practice. Accurate, reproducible, and convenient animal models of spinal cord injury are essential for studying spinal cord injury. We present a novel automated spinal cord injury contusion device for mice, the Guangzhou Jinan University smart spinal cord injury system, that can produce spinal cord injury contusion models with accuracy, reproducibility, and convenience. The system accurately produces models of varying degrees of spinal cord injury via laser distance sensors combined with an automated mobile platform and advanced software. We used this system to create three levels of spinal cord injury mice models, determined their Basso mouse scale (BMS) scores, and performed behavioral as well as staining assays to demonstrate its accuracy and reproducibility. We show each step of the development of the injury models using this device, forming a standardized procedure. This method produces reproducible spinal cord injury contusion mice models and reduces human manipulation factors via convenient handling procedures. The developed animal model is reliable for studying spinal cord injury mechanisms and associated treatment approaches.


Assuntos
Contusões , Traumatismos da Medula Espinal , Camundongos , Humanos , Animais , Reprodutibilidade dos Testes , Medula Espinal/patologia , Modelos Animais , Contusões/patologia , Modelos Animais de Doenças
3.
Neuroscience ; 544: 75-87, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38423163

RESUMO

The cytoskeleton must be remodeled during neurite outgrowth, and Superior Cervical Ganglion 10 (SCG10) plays a critical role in this process by depolymerizing Microtubules (MTs), conferring highly dynamic properties to the MTs. However, the precise mechanism of action of SCG10 in the repair of injured neurons remains largely uncertain. Using transcriptomic identification, we discovered that SCG10 expression was downregulated in neurons after Spinal Cord Injury (SCI). Additionally, through mass spectrometry identification, immunoprecipitation, and pull-down assays, we established that SCG10 could interact with Adenosine Kinase (ADK). Furthermore, we developed an excitotoxicity-induced neural injury model and discovered that ADK suppressed injured neurite re-growth, whereas, through overexpression and small molecule interference experiments, SCG10 enhanced it. Moreover, we discovered ADK to be the upstream of SCG10. More importantly, the application of the ADK inhibitor called 5-Iodotubercidin (5-ITu) was found to significantly enhance the recovery of motor function in mice with SCI. Consequently, our findings suggest that ADK plays a negative regulatory role in the repair of injured neurons. Herein, we propose a molecular interaction model of the SCG10-ADK axis to regulate neuronal recovery.


Assuntos
Adenosina Quinase , Proteínas de Transporte , Camundongos , Animais , Proteínas de Transporte/metabolismo , Adenosina Quinase/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo
4.
Elife ; 122024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231910

RESUMO

Axon regeneration is abortive in the central nervous system following injury. Orchestrating microtubule dynamics has emerged as a promising approach to improve axonal regeneration. The microtubule severing enzyme spastin is essential for axonal development and regeneration through remodeling of microtubule arrangement. To date, however, little is known regarding the mechanisms underlying spastin action in neural regeneration after spinal cord injury. Here, we use glutathione transferase pulldown and immunoprecipitation assays to demonstrate that 14-3-3 interacts with spastin, both in vivo and in vitro, via spastin Ser233 phosphorylation. Moreover, we show that 14-3-3 protects spastin from degradation by inhibiting the ubiquitination pathway and upregulates the spastin-dependent severing ability. Furthermore, the 14-3-3 agonist Fusicoccin (FC-A) promotes neurite outgrowth and regeneration in vitro which needs spastin activation. Western blot and immunofluorescence results revealed that 14-3-3 protein is upregulated in the neuronal compartment after spinal cord injury in vivo. In addition, administration of FC-A not only promotes locomotor recovery, but also nerve regeneration following spinal cord injury in both contusion and lateral hemisection models; however, the application of spastin inhibitor spastazoline successfully reverses these phenomena. Taken together, these results indicate that 14-3-3 is a molecular switch that regulates spastin protein levels, and the small molecule 14-3-3 agonist FC-A effectively mediates the recovery of spinal cord injury in mice which requires spastin participation.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas 14-3-3/metabolismo , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Estabilidade Proteica , Recuperação de Função Fisiológica/fisiologia , Espastina/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
5.
ACS Nano ; 18(3): 2355-2369, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197586

RESUMO

Functional recovery following a spinal cord injury (SCI) is challenging. Traditional drug therapies focus on the suppression of immune responses; however, strategies for alleviating oxidative stress are lacking. Herein, we developed the zinc-organic framework (Zn@MOF)-based aggregation-induced emission-active nanozymes for accelerating recovery following SCI. A multifunctional Zn@MOF was modified with the aggregation-induced emission-active molecule 2-(4-azidobutyl)-6-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)-1H-phenalene-1,3-dione via a bioorthogonal reaction, and the resulting nanozymes were denoted as Zn@MOF-TPD. These nanozymes gradually released gallic acid and zinc ions (Zn2+) at the SCI site. The released gallic acid, a scavenger of reactive oxygen species (ROS), promoted antioxidation and alleviated inflammation, re-establishing the balance between ROS production and the antioxidant defense system. The released Zn2+ ions inhibited the activity of matrix metalloproteinase 9 (MMP-9) to facilitate the regeneration of neurons via the ROS-mediated NF-κB pathway following secondary SCI. In addition, Zn@MOF-TPD protected neurons and myelin sheaths against trauma, inhibited glial scar formation, and promoted the proliferation and differentiation of neural stem cells, thereby facilitating the repair of neurons and injured spinal cord tissue and promoting functional recovery in rats with contusive SCI. Altogether, this study suggests that Zn@MOF-TPD nanozymes possess a potential for alleviating oxidative stress-mediated pathophysiological damage and promoting motor recovery following SCI.


Assuntos
Traumatismos da Medula Espinal , Zinco , Ratos , Animais , Zinco/uso terapêutico , Espécies Reativas de Oxigênio/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal , Ácido Gálico/uso terapêutico , Íons
6.
Brain Res Bull ; 205: 110806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918696

RESUMO

Promoting axonal regeneration is an effective strategy for recovery from traumatic spinal cord injury (SCI). Spastin, a microtubule-severing protein, modulates axonal outgrowth and branch formation by regulating microtubule dynamics. However, the exact role of spastin during recovery from SCI remains unknown. Therefore, we utilized a hemisection injury model of the mouse spinal cord and explored the effect of spastin using a spastin inhibitor, spastazoline. Results showed that spastazoline significantly suppressed the microtubule-severing activity of spastin in COS-7 cells and inhibited the promoting effect of spastin on neurite outgrowth in primarily cultured hippocampal neurons. The protein expression level of spastin was significantly upregulated in the injured spinal cord. Injured mice showed impaired motor functions, which included increased toe-off angle and foot fault steps and decreased stride length and Basso mouse scale score. Notably, these motor function impairments were aggravated by the application of spastazoline. Inhibition of spastin exacerbated neurogenesis impairment, as demonstrated by neuronal nuclei antigen staining, the inflammatory response, as shown by Iba-1 and GFAP staining, and axonal regeneration impairment, as shown by 5-hydroxytryptamine staining. Furthermore, mass spectrometry analysis revealed that the inhibition of spastin resulted in numerous dysregulated differentially expressed proteins that were closely associated with vesicle organization and transport. Taken together, our data suggest that spastin is critical for recovery from SCI and may be a potential target for the treatment of SCI.


Assuntos
Espastina , Traumatismos da Medula Espinal , Animais , Camundongos , Neurônios/metabolismo , Recuperação de Função Fisiológica/fisiologia , Espastina/antagonistas & inibidores , Espastina/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
7.
Redox Biol ; 67: 102913, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37857001

RESUMO

Oxidative stress is a key factor leading to profound neurological deficits following spinal cord injury (SCI). In this study, we present the development and potential application of an iridium (iii) complex, (CpxbiPh) Ir (N^N) Cl, where CpxbiPh represents 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl, and N^N denotes 2-(3-(4-nitrophenyl)-1H-1,2,4-triazol-5-yl) pyridine chelating agents, to address this challenge through a mechanism governed by the regulation of an antioxidant protein. This iridium complex, IrPHtz, can modulate the Oxidation Resistance 1 (OXR1) protein levels within spinal cord tissues, thus showcasing its antioxidative potential. By eliminating reactive oxygen species (ROS) and preventing apoptosis, the IrPHtz demonstrated neuroprotective and neural healing characteristics on injured neurons. Our molecular docking analysis unveiled the presence of π stacking within the IrPHtz-OXR1 complex, an interaction that enhanced OXR1 expression, subsequently diminishing oxidative stress, thwarting neuroinflammation, and averting neuronal apoptosis. Furthermore, in in vivo experimentation with SCI-afflicted mice, IrPHtz was efficacious in shielding spinal cord neurons, promoting their regrowth, restoring electrical signaling, and improving motor performance. Collectively, these findings underscore the potential of employing the iridium metal complex in a novel, protein-regulated antioxidant strategy, presenting a promising avenue for therapeutic intervention in SCI.


Assuntos
Complexos de Coordenação , Traumatismos da Medula Espinal , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Irídio/química , Irídio/farmacologia , Irídio/uso terapêutico , Antioxidantes/metabolismo , Simulação de Acoplamento Molecular , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Estresse Oxidativo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico
8.
J Natl Compr Canc Netw ; 21(8): 821-830.e3, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549911

RESUMO

BACKGROUND: Radiotherapy (RT) causes adverse events for which there are no effective treatments. This study investigated the clinical benefits of compound Kushen injection (CKI) in managing radiation injury in patients with lung cancer. METHODS: A multicenter, open-label, randomized clinical trial randomly assigned patients with lung cancer to receive either CKI (20 mL/d for at least 4 weeks) integrated with curative RT (RT + CKI group; n=130) or RT alone (control group; n=130). The primary outcome was the incidence of grade ≥2 radiation-induced lung injury (RILI) in the lungs, esophagus, or heart. Secondary outcomes included patient-reported symptoms, quality of life, objective response rate (ORR), and toxic effects. RESULTS: During the 16-week trial, the RT + CKI group had a significantly lower incidence of grade ≥2 RT-related injury than the control group (12.3% [n=16] vs 23.1% [n=30]; P=.02). Compared with the control group, the RT + CKI group experienced a significant decrease in moderate-to-severe symptoms of fatigue, cough, and pain (P<.001 for the treatment and time interaction term); significantly less physical symptom interference (P=.01); and significantly better quality of life by the end of the trial (P<.05). No statistically significant difference in ORR was found. Adverse reactions associated with CKI were rare. CONCLUSIONS: This study demonstrated low toxicity of CKI and its effectiveness in patients with lung cancer in reducing the incidence of grade ≥2 RILI and symptom burden, improving patients' quality of life.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Qualidade de Vida , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/uso terapêutico , Medicamentos de Ervas Chinesas/efeitos adversos
9.
Aging (Albany NY) ; 15(14): 6798-6821, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37451838

RESUMO

DNA sensors play crucial roles in inflammation and have been indicated to be involved in antitumor or tumorigenesis, while it is still unclear whether DNA sensors have potential roles in the prognosis and immunotherapy of hepatocellular carcinoma (HCC). Herein, The Cancer Genome Atlas and Gene Expression Omnibus databases were used to analyze RNA sequencing data and clinical information. A total of 14 DNA sensors were collected and performed consensus clustering to determine their molecular mechanisms in HCC. Two distinct molecular subtypes (Clusters C1 and C2) were identified and were associated with different overall survival (OS). Immune subtype analysis revealed that C1 was mainly characterized by inflammation, while C2 was characterized by lymphocyte depletion. Immune scoring and immunomodulatory function analysis confirmed the different immune microenvironment of C1 and C2. Notably, significant differences in "Hot Tumor" Immunophenotype were observed between the two subtypes. Moreover, the prognostic model based on DNA sensors is capable of effectively predicting the OS of HCC patients. Besides, the chemotherapeutic drug analysis showed the different sensitivity of two subtypes. Taken together, our study shows that the proposed DNA sensors were a reliable signature to predict the prognosis and immunotherapy response with potential application in the clinical decision and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , DNA , Inflamação , Microambiente Tumoral
10.
Front Oncol ; 13: 1142703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492472

RESUMO

Background: Prevention and treatment of colorectal adenoma (CRA) are great significant to reduce morbidity and mortality of colorectal cancer. Although there have been numerous studies on CRA recently, few publications utilized the bibliometrics to evaluate this field. The objective of current study was to provide a comprehensive analysis of the current state and frontier progress of CRA over the past 20 years. Methods: The Web of Science Core Collection was utilized to extracted all studies of CRA during 2002-2022. Bibliometric tools including CiteSpace, VOSviewer, and the Online Analysis Platform of Literature Metrology were used for statistical analysis. CiteSpace and the Online Analysis Platform were used to evaluate the contributions of various countries/regions, institutions, authors, and journals in this field. Research hotspots and trends were identified through keywords and references analysis by VOSviewer and CiteSpace. Results: 2,268 publications from 2002 to 2022 in total were identified. The number of global publications in this field has increased annually. The USA was the most productive country, contributing nearly 30% of global publications. But in recent years, China's publications grew rapidly and had the highest citation strength. The most productive institutions was the National Cancer Institute. Baron JA from the USA was the most productive and the one of most co-cited authors. Cancer Epidemiology Biomarkers & Prevention had the highest number of publications and Gastroenterology was the most co-cited journals. Analysis of keywords clusters showed that "mechanism/pathophysiology", "risk factors and prevention", "colonoscopy screening and treatment", "metabolism", and "microbiota" were the major frontier topics and the main research directions. Conclusions: CRA publications have shown a gradual upward trend in recent years, most of which have been published by developed countries. Developing countries should further focus on CRA research and transnational cooperation with developed countries in the future, in order to better improve the situation of the increasing morbidity and mortality of CRC. Baron JA was the most outstanding researcher in this field. More attention should be devoted to "pathogenesis of CRA", "less invasive diagnostic methods", "chemoprevention", and "screening and risk prediction of CRA including gut microbiome and metabolism", which will be frontiers in the future.

11.
J Sports Med Phys Fitness ; 63(10): 1118-1125, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382411

RESUMO

BACKGROUND: The influence of physical activity, diet and sleep on asthma has been well documented by recent studies respectively. However, few studies focus on the relationship between asthma attack and the overall lifestyle, which comprises interrelated lifestyle factors. This study aims to investigate the influence of lifestyles on the ratio of asthma attack. Data were extracted from the NHANES database (2017 to May 2020). METHODS: A total of 834 asthmatic patients were enrolled and divided into non-asthma attack (N.=460) and asthma attack (N.=374) groups. The risk factors for asthma attacks were preliminarily identified by univariate logistic analysis, then multivariate logistic analysis was employed to select independent risk factors other than lifestyles and further determine the association between lifestyles and asthma attacks. RESULTS: After multivariate logistic analysis, engagement of vigorous activity (Model 1 P=0.010, Model 2 P=0.016, Model 3 P=0.012), engagement of moderate activity (Model 1 P=0.006, Model 2 P=0.008, Model 3 P=0.003) and sleep disorder (Model1 P=0.001, Model 2 P<0.001, Model 3 P=0.008) were determined as independent risk factors of lifestyles for an asthma attack in the past year. CONCLUSIONS: This research documented that, for asthmatic patients, engagement of vigorous activity, engagement of moderate activity, and sleep disorder will make an asthma attack more likely to happen.


Assuntos
Asma , Humanos , Adulto , Estudos Transversais , Inquéritos Nutricionais , Asma/epidemiologia , Estilo de Vida , Fatores de Risco
12.
Small ; 19(35): e2207888, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37127878

RESUMO

Spinal cord injury (SCI), following explosive oxidative stress, causes an abrupt and irreversible pathological deterioration of the central nervous system. Thus, preventing secondary injuries caused by reactive oxygen species (ROS), as well as monitoring and assessing the recovery from SCI are critical for the emergency treatment of SCI. Herein, an emergency treatment strategy is developed for SCI based on the selenium (Se) matrix antioxidant system to effectively inhibit oxidative stress-induced damage and simultaneously real-time evaluate the severity of SCI using a reversible dual-photoacoustic signal (680 and 750 nm). Within the emergency treatment and photoacoustic severity assessment (ETPSA) strategy, the designed Se loaded boron dipyrromethene dye with a double hydroxyl group (Se@BDP-DOH) is simultaneously used as a sensitive reporter group and an excellent antioxidant for effectively eliminating explosive oxidative stress. Se@BDP-DOH is found to promote the recovery of both spinal cord tissue and locomotor function in mice with SCI. Furthermore, ETPSA strategy synergistically enhanced ROS consumption via the caveolin 1 (Cav 1)-related pathways, as confirmed upon treatment with Cav 1 siRNA. Therefore, the ETPSA strategy is a potential tool for improving emergency treatment and photoacoustic assessment of SCI.


Assuntos
Selênio , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/tratamento farmacológico , Estresse Oxidativo , Tratamento de Emergência
13.
BMC Musculoskelet Disord ; 24(1): 303, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072713

RESUMO

OBJECTIVE: The objective of this study was to compare the clinical efficacy of DRTR (Double Reverse Traction Repositor, DRTR)and traction table in the treatment of femoral shaft fractures with the aid of AN-IMN (Antegrade intramedullary nailing). PATIENTS AND METHODS: In this study, patients with femoral shaft fractures admitted to the Department of Orthopedics at Zhaoqing First People's Hospital from May 2018 to October 2022 were recruited. All patients were treated with anterograde intramedullary nailing, with 23 patients in the DRTR-assisted group and 21 patients in the traction table-assisted group. The demographic characteristics, fracture classification, intraoperative data, postoperative data, and prognostic indicators of the two groups were recorded and analyzed retrospectively. All procedures were performed by the same team of experienced physicians. RESULTS: All the patients in the two groups were followed up for more than 12 months. Both traction methods could provide stable traction for the operator during AN-IMN, and there was no significant difference in demographic characteristics and fracture classification. The intraoperative fluoroscopy times and opening reduction rate of the DRTR group were lower than those of the traction table group (P < 0.05), and the postoperative Harris Hip Score, as well as the Lyshol Lysholm knee function Score of the DRTR group, were significantly higher than the traction table group members (P < 0.05). Postoperative complications such as perineal soft tissue injury and lateral femoral cutaneous nerve injury occurred in the traction table group, but not in the DRTR group. CONCLUSION: DRTR can safely and effectively provide continuous and stable traction in the femoral shaft fractures surgery, and outperforms the traction table in the number of intraoperative fluoroscopy, opening reduction rate, reduction of complications, and postoperative joint function score.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Humanos , Tração/métodos , Estudos Retrospectivos , Pinos Ortopédicos , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/cirurgia , Fraturas do Fêmur/etiologia , Fixação Intramedular de Fraturas/efeitos adversos , Fixação Intramedular de Fraturas/métodos , Resultado do Tratamento
14.
Nurs Crit Care ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041106

RESUMO

BACKGROUND: Spinal fracture is a common traumatic condition in orthopaedics, accounting for 5%-6% of total body fractures, and is a high-risk factor for venous thromboembolism (VTE), which seriously affects patient prognosis. AIM: The aim of this study was to determine the impact of VTE prophylaxis on the prognosis of patients with spinal fractures in intensive care units (ICUs) and to provide a scientific basis for clinical treatment and nursing. DESIGN: A retrospective study of patients with spinal fractures from the multicenter eICU Collaborative Research Database. METHOD: The outcomes of this study were ICU mortality and in-hospital mortality. Patients were divided into the VTE prophylaxis (VP) and no VTE prophylaxis (NVP) groups according to whether they had undergone VTE prophylaxis during their ICU admission. The association between groups and outcomes were analysed using Kaplan-Meier (KM) survival curve, log-rank test and the Cox proportional-hazards regression model. RESULTS: This study included 1146 patients with spinal fractures: 330 in the VP group and 816 in the NVP group. KM survival curves and log-rank tests revealed that both ICU and in-hospital survival probabilities in the VP group were significantly higher than in the NVP group. After the Cox model was adjusted for all covariates, the hazard ratio for ICU mortality in the VP group was 0.38 (0.19-0.75); the corresponding value for in-hospital mortality in the VP group was 0.38 (0.21-0.68). CONCLUSIONS: VTE prophylaxis is associated with reduced ICU and in-hospital mortality in patients with spinal fractures in ICUs. More research is necessary to further define specific strategies and optimal timing for VTE prophylaxis. RELEVANCE TO CLINICAL PRACTICE: This study provides the basis that VTE prophylaxis may be associated with improved prognosis in patients with spinal fractures in ICUs. In clinical practice, an appropriate modality should be selected for VTE prophylaxis in such patients.

15.
Biomater Sci ; 11(6): 2200-2210, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745434

RESUMO

While immunotherapy has emerged as a promising strategy to treat melanoma, the limited availability of immunotherapeutic agents in tumors due to the immunosuppressive tumor microenvironment dampens its efficacy. Pyroptosis is a gasdermin-mediated programmed necrosis that triggers the inflammatory tumor microenvironment and enhances the efficacy of tumor immunotherapy. Here, we prove that the CXCR4 antagonist T22 peptide specially targeted and became internalized into CXCR4+ melanoma cells. Then we report a self-assembling nanotoxin that can be used to spatiotemporally target CXCR4-expression melanoma cells and enable tunable cellular pyroptosis. Specific activation of caspase 3 signal transduction triggers gasdermin-E-mediated pyroptosis. This nanotoxin induces pyroptotic cell death resulting in enhanced antitumor efficacy and minimized systemic side effects toward melanoma in vivo. This study offers new insights into how to engineer nanotoxins with tunable pyroptosis activity through specifically targeting CXCR4 for biomedical applications.


Assuntos
Melanoma , Piroptose , Humanos , Gasderminas , Apoptose , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Transdução de Sinais , Microambiente Tumoral , Receptores CXCR4/metabolismo
16.
Biochem Biophys Res Commun ; 643: 77-87, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587525

RESUMO

Investigating novel mechanisms of neurite outgrowth via cytoskeleton is critical for developing therapeutic strategies against neural disorders. Rab3A is a vesicle-related protein distributed throughout the nervous system, but the detailed mechanism related to cytoskeleton remains largely unknown. Our previous reports show that spastin serves microtubule to regulate neurite outgrowth. Here, we asked whether Rab3A could function via modulating spastin during neuronal development. The results revealed that Rab3A colocalized with spastin in cultured hippocampal neurons. Immunoprecipitation assays showed that Rab3A physically interacted with spastin in rat brain lysates. Rab3A overexpression significantly induced spastin degradation; this effect was reversed by leupeptin- or MG-132- administration, suggesting the lysosomal and ubiquitin-mediated degradation system. Immunofluorescence staining further confirmed that Rab3A and spastin immune-colocalized with the lysosome marker lysotracker. In COS7 cells, Rab3A overexpression significantly downregulated spastin expression and abolished the spastin-mediated microtubule severing. Furthermore, overexpression inhibited while genetic knockdown of Rab3A promoted neurite outgrowth. However, this inhibitory effect on neurite outgrowth in hippocampal neurons could be reversed via co-transfection of spastin, indicating that Rab3A functions via its interaction protein spastin. In general, our data identify an interaction between Rab3A and spastin, and this interaction affects the protein stability of spastin and eliminates its microtubule severing function, thereby modulating neurite outgrowth.


Assuntos
Adenosina Trifosfatases , Paraplegia Espástica Hereditária , Animais , Ratos , Adenosina Trifosfatases/metabolismo , Neuritos/metabolismo , Crescimento Neuronal , Neurônios/metabolismo , Proteína rab3A de Ligação ao GTP , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Espastina/metabolismo , Espastina/farmacologia
17.
Biosens Bioelectron ; 222: 114995, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516631

RESUMO

Surgical resection is a critical procedure for treatment of solid tumor, which commonly suffers from postoperative local recurrence due to the possibility of positive surgical margin. Although the widely used clinical imaging techniques (CT, MRI, PET, etc.) show beneficial effects in providing a macroscopic view of preoperative tumor position, they are still failing to provide intraoperative real-time imaging navigation during the surgery and need oral or intravenous injection contrast agents with risk of adverse effects. In this work, we present a nano-spray assisted photothermal imaging system for in vitro cells discrimination as well as in vivo visualization of tumor position and border that guides real-time precise tumor resection during surgery (even for tiny tumor less than 3 mm). Herein, the nano-spray were prepared by RGD peptide functionalized polydopamine (PDA-RGD) nanospheres with excellent photothermal conversion efficiency (54.27%), stability and reversibility, which target ανß3 integrin overexpressed tumor cells. Such PDA-RGD serve as nanothermometers that convert and amplify biological signal to intuitive thermal image signal, depicting the tumor margin in situ. In comparison to conventional imaging techniques, our approach through topical spraying together with portable infrared camera has the characteristics of low cost, convenient, no radiation hazard, real-time intraoperative imaging-guidance and avoiding the adverse effects risk of oral or intravenous contrast agent. This technology provides a new universal tool for potentially assisting surgeons' decision in real-time during surgery and aiding to improved outcome.


Assuntos
Técnicas Biossensoriais , Nanosferas , Neoplasias , Humanos , Polímeros/uso terapêutico , Neoplasias/patologia , Meios de Contraste , Oligopeptídeos
18.
Sci Rep ; 12(1): 18757, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335129

RESUMO

Liver cancer is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with liver cancer. Hypoxia is a common feature of solid tumors and enhances malignant character of cancer cells. However, the exact mechanisms involved in hypoxia-driven liver cancer progression and metastasis have not been well clarified so far. The aim of this study was to investigate the contribution of long non-coding RNA (lncRNA) in hypoxia promoting liver cancer progression. We screened and revealed LINC00839 as a novel hypoxia-responsive lncRNA in liver cancer. LINC00839 expression was up-regulated in liver cancer tissues and cell lines, and the patients with high LINC00839 expression had shortened overall survival. LINC00839 further overexpressed under hypoxia and promoted liver cancer cell proliferation, migration, and invasion. Mechanistically, LINC00839 bound multiple proteins that were primarily associated with the metabolism and RNA transport, and positively regulated the expression of Formin-like protein 2 (FMNL2). LINC00839 could promote hypoxia-mediated liver cancer progression, suggesting it may be a clinically valuable biomarker and serve as a molecular target for the diagnosis, prognosis, and therapy of liver cancer.


Assuntos
Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Proliferação de Células/genética , Hipóxia/genética , Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , MicroRNAs/genética , Forminas
19.
Chron Respir Dis ; 19: 14799731221140797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36409005

RESUMO

Azithromycin was thought to prevent acute exacerbations of chronic obstructive pulmonary disease (AECOPDs) by anti-microbial and anti-inflammatory effects. However, it's value in the treatment of critically ill patients with AECOPD before ICU admission remains unclear. Our study aimed to find whether azithromycin use prior to ICU admission leads to better clinical outcomes for those individuals. 533 critically ill patients with AECOPD from the MIMIC-IV database were included. Univariate followed multivariate logistic regression was used to select risk factors for short-term mortality. The multivariable logistic regression models were implemented to investigate the association between azithromycin use before ICU admission and short-term mortality. Lower short-term mortality was observed in the azithromycin group (p = .021), independent of differences in demographic data and other clinical outcomes (p>.05). Azithromycin use before ICU admission was proved to have a decreased short-term mortality by multivariable logistic regression (p<.05). The results remained consistent after being stratified by age, SOFA scores, pH, and cancer diagnosis. Azithromycin use prior to ICU admission was associated with lower short-term mortality for critically ill AECOPD patients.


Assuntos
Estado Terminal , Doença Pulmonar Obstrutiva Crônica , Humanos , Estado Terminal/terapia , Azitromicina/uso terapêutico , Unidades de Terapia Intensiva , Estudos Retrospectivos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
20.
Front Mol Neurosci ; 15: 950586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090256

RESUMO

The maintenance of appropriate endoplasmic reticulum (ER) homeostasis is critical to effective spinal cord injury (SCI) repair. In previous reports, protein disulfide isomerase A6 (PDIA6) demonstrated to serve as a reversible functional modulator of ER stress responses, while spastin can coordinate ER organization through the modulation of the dynamic microtubule network surrounding this organelle. While both PDIA6 and spastin are thus important regulators of the ER, whether they interact with one another for SCI repair still needs to be determined. Here a proteomics analysis identified PDIA6 as being related to SCI repair, and protein interaction mass spectrometry further confirmed the ability of PDIA6 and spastin to interact with one another. Pull-down and co-immunoprecipitation assays were further performed to validate and characterize the interactions between these two proteins. The RNAi-based knockdown of PDIA6 in COS-7 cells inhibited the activity of spastin-dependent microtubule severing. PDIA6 was also found to promote injured neuron repair, while spastin knockdown reversed this reparative activity. Together, these results thus confirm that PDIA6 and spastin function together as critical mediators of nerve repair, highlighting their potential value as validated targets for efforts to promote SCI repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...